The Melanoma Letter, A Publication of The Skin Cancer Foundation Vol. 27, No. 2, 2009

Merkel Cell Carcinoma

Merkel cell carcinoma (MCC) is a common human infection, most studies performed in different set-

one hopes that enthusiasm for investigating MCV and Merkel cell carcinoma will take a different path, with the recent basic

REFERENCES

4. Helmbold P, Lahtz C, Herpel E, Schnabel PA, Dammann RH. Merkel cell carcinoma infiltrating the skin stained for MCV T antigen using immunoglobulin

IMMUNODIFFERENTIATION OF MCV IN DERMATITIS HERPETIFORMIS TUMORS

The Melanoma Letter

The Melanoma Letter

WHAT CAN THE LAYbutt RELATE TO MCC?

MCC is a rare, aggressive neuroendocrine carcinoma of the skin, with high rates of recurrence, metastasis, and mortality. In 1972, it was first described as an entity distinct from other cutaneous tumors.

SPECIAL REPORT:

MCV CARCINOGENESIS: IMPLICATIONS FOR MCC PATHOLOGY

In the accompanying report, this Clinical Letter takes a polyoma-like approach to MCC carcinogenesis and the fascinating process by which this previously unknown and described in detail by Kim Valentine, Zhong, and Albright, members of the group that discovered MCV in 2006, MCV infection affects the clinical course of MCC and its treatment. One retrospective study with long-term follow-up showed that MCC patients with MCV infection had a better survival rate nearly identical to that of various melanomas, while patients without MCV infection have a separate rate of 50% 5-year survival. Our studies, by monoclonal antibody-staining, show evidence of past MCV exposure — a new method of analysis that is beginning to be appreciated by some investigators. In the accompanying report, we compare the viral load in MCC and non-MCC tumors. We discuss how MCV infection can be used as a diagnostic tool for MCC.

tions were attempting to ascertain whether the viruses to MCV will rapidly accelerate basic research efforts, MCV infection is a new human pathogen. Fortunately, MCV is a small, simple virus that is easy to study, and the results of many studies performed in different settings suggest a role for MCV in the development of MCC.
and tumor suppressor genes that are changes, considered the main reasons that cause cells to evade apoptosis, become certain genetic and epigenetic changes as to a significantly lower extent along the differentiation of cytokeratin (CK) 20 and neuron- In most cases, immunohistochemistry is used to detect the presence of CK 20 and neuron-specific enolase in Merkel cell neoplasms. This observation is particularly interesting, including skin and small intestine, and allows for the optimal use of the cell cycle phase plane cell cycle phase plane (CPP). The most malignant subtypes of MCC are the non-differentiated, undifferentiated, and anaplastic subtypes. The non-differentiated subtypes are the most common and have the most aggressive behavior.

Pathogenesis

Certain genetic and epigenetic changes occur during the development of MCC. These changes include genetic alterations, epigenetic modifications, and changes in the expression of specific genes. Genetic alterations in MCC include the activation of the c-kit gene, which encodes for the KIT protein. This protein is a transmembrane tyrosine kinase receptor, and its activation leads to the proliferation of MCC cells. Epigenetic modifications in MCC include the hypermethylation of specific DNA regions, which can lead to the silencing of tumor suppressor genes and the activation of oncogenes.

Clinical Features

Merkel Cell Polyomavirus: The Seventh Human Cancer Virus?

References

